M447 - Mathematical Models/Applications 1- Homework 1

Enrique Areyan

September 2, 2014

Chapter 2, Section 2.5

(5) A ten-stage model for human population growth has the reproduction and survival rates as shown below. Using these data, estimate the long-term rate of increase and the long-term distribution of the population in the ten age groups.

Stage	f_{i}	s_{i}
1	0	.997
2	.001	.998
3	.085	.998
4	.306	.997
5	.400	.996
6	.281	.995
7	.153	.992
8	.064	.989
9	.015	.983
10	.001	

Solution: Using these data we can build the following matrix of vital rates for the population:

$$
\mathbf{A}=\left[\begin{array}{cccccccccc}
0 & .001 & .085 & .306 & .400 & .281 & .153 & .064 & .015 & .001 \\
.997 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & .998 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & .998 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & .997 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & .996 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .995 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & .992 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & .989 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .983 & 0
\end{array}\right]
$$

By fact (2.26), to find the the long-term rate of increase and the long-term distribution of the population in the ten age groups, we need to find the largest eigenvalue and its associated eigenvector (which will be normalized to add up to 1).

I used Octave to find the eigenvalues and eigenvector. In Octave, assuming one has the matrix A in memory, use the commands: $[V, l a m b d a]=e i g(A)$. The largest eigenvalue is approximately $\lambda_{0}=1.04995$, and its corresponding eigenvector is $V_{\lambda_{0}}=[-0.39146,-0.37172,-0.35333,-0.33585,-0.31891,-0.30252,-0.28669,-0.27087,-0.25515,-0.23888]$.
Finally, let us normalize this vector so that its components add up to one. To that end, let us find the value of x such that:

$$
\begin{gathered}
x \cdot \sum_{i=1}^{10} V_{\lambda_{0}}(i)=1 \Longrightarrow x=\frac{1}{-0.39146-0.37172-0.35333-0.33585-0.31891-0.30252-0.28669-0.27087-0.25515-0.23888} \\
\Longrightarrow x=-0.31996109273
\end{gathered}
$$

Hence, our normalize vector $\mathbf{W}=x \cdot V_{\lambda_{0}}$ is
$\mathbf{W}=[0.125252,0.118936,0.113051,0.107458,0.102039,0.096796,0.091730,0.086668,0.081637,0.076431]$
The long-term rate of increase is λ_{0} and the long-term distribution o the population is given by \mathbf{W}.

